Paths and Stability Number in Digraphs
نویسندگان
چکیده
The Gallai-Milgram theorem says that the vertex set of any digraph with stability number k can be partitioned into k directed paths. In 1990, Hahn and Jackson conjectured that this theorem is best possible in the following strong sense. For each positive integer k, there is a digraph D with stability number k such that deleting the vertices of any k− 1 directed paths in D leaves a digraph with stability number k. In this note, we prove this conjecture.
منابع مشابه
Independent domination in directed graphs
In this paper we initialize the study of independent domination in directed graphs. We show that an independent dominating set of an orientation of a graph is also an independent dominating set of the underlying graph, but that the converse is not true in general. We then prove existence and uniqueness theorems for several classes of digraphs including orientations of complete graphs, paths, tr...
متن کاملPaths partition with prescribed beginnings in digraphs: A Chvátal-Erdös condition approach
A digraph D verifies the Chvátal-Erdős conditions if α(D) ≤ κ(D), where α(D) is the stability of D and κ(D) is its vertex-connectivity. Related to the Gallai-Milgram Theorem ([5]), we raise in this context the following conjecture. For every set of α = α(D) vertices {x1, . . . , xα}, there exists a vertex-partition of D into directed paths {P1, . . . , Pα} such that Pi begins at xi for all i. T...
متن کاملTwin signed total Roman domatic numbers in digraphs
Let $D$ be a finite simple digraph with vertex set $V(D)$ and arcset $A(D)$. A twin signed total Roman dominating function (TSTRDF) on thedigraph $D$ is a function $f:V(D)rightarrow{-1,1,2}$ satisfyingthe conditions that (i) $sum_{xin N^-(v)}f(x)ge 1$ and$sum_{xin N^+(v)}f(x)ge 1$ for each $vin V(D)$, where $N^-(v)$(resp. $N^+(v)$) consists of all in-neighbors (resp.out-neighbors) of $v$, and (...
متن کاملThe Italian domatic number of a digraph
An {em Italian dominating function} on a digraph $D$ with vertex set $V(D)$ is defined as a function$fcolon V(D)to {0, 1, 2}$ such that every vertex $vin V(D)$ with $f(v)=0$ has at least two in-neighborsassigned 1 under $f$ or one in-neighbor $w$ with $f(w)=2$. A set ${f_1,f_2,ldots,f_d}$ of distinctItalian dominating functions on $D$ with the property that $sum_{i=1}^d f_i(v)le 2$ for each $vi...
متن کاملEdge-disjoint paths in digraphs with bounded independence number
A digraph H is infused in a digraph G if the vertices of H are mapped to vertices of G (not necessarily distinct), and the edges of H are mapped to edge-disjoint directed paths of G joining the corresponding pairs of vertices of G. The algorithmic problem of determining whether a fixed graph H can be infused in an input graph G is polynomial-time solvable for all graphs H (using paths instead o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. J. Comb.
دوره 16 شماره
صفحات -
تاریخ انتشار 2009